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Algebraic areas enclosed by Brownian curves on bounded 
domains 

J Desbois and A Cnmtett 
Division de  Physique Thkoriquet, Institut de Physique Nucliaire, 91406, Onay Cedex, 
France 

Received 1 August 1991, in final form 6 March 1991 

AbslracL Using mnstrained path mtegrals and perturbation theory, we study the algebraic 
area, A,  enclosed Ly closed Brownian a w e s  on various domains such as rectangles or 
strips. In the limit of infinitely long N W ~ S ,  the probability distribution P ( A )  is shown 
to be Gaussian. The standard deviation (d2)’I2  is simply cxpreoed in terms of the 
length sa les  of the problem. 

Since the pioneering work of Ley [l], the study of the algebraic area, A, enclosed 
by a closed Brownian curve of length t has aroused great interest. For instance, the 
problem of the probability distribution P ( A )  has been recently re-examined in various 
contexts 121. In particular, transport properties in $!ordered materials in presence 
of magnetic fields are closely related to P(A) .  Knowledge of this distribution allows 
us to calculate corrections to weak localization (anomalous magnetoresistance 131) 
as well as to localization lengths in Anderson insulators [4, 51. In the case of weak 
localization, the essential aspect of the physics is indeed governed by interference 
effects between pairs of time reversed paths. In quasi-two-dimensional samples, the 
correction to the  Drude conductivity is given by [3] 

2 e Z D  (1 - cos - 
h 

Au( B )  - Au(0)  = __ 
x h  

where B is the magnetic field and the bracket represents an averaging Over all the 
loops that enclose an algebraic area A. In the case of Anderson insulators, heuristic 
arguments that account for the effects of the magnetic field on the localization length 
have been recently proposed [S, 61. Although the physical picture is quite different, 
a central role is again played by interference effects. The localization length can be 
expresscd through an average similar to the one mentioned above. When the path of 
the electron is not restricted by finite sample geometry, this average can be computed 
with the Levy formula. In finite samples, a plausibility argument involving the central 
limit theorem [SI permits one to estimate the asymptotic distribution P ( A ) .  In this 
paper, we reconsider this problem using constrained path integrals and elementary 
perturbation theory. We calculate the asymptotic ( t  + cu) distribution P(d) for 

t Also al: LPTPE, Tour 16, UnivenitC Paris 6, Fmnce. 
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Brownian curves that are restricted to limited regions of the plane such as rectangles, 
strips or rings. Our analysis corroborates formula (8) of [SI. 

First, we recall Levy's law for dosed Brownian curves of length 1 and algebraic 
area A. In the path integral formulation, the probability P ( A l r ( 0 ) )  for a curve, with 
initial and final point fvted, to enclose the area A is 
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(N is a normalization factor; the usual diffusion constant, D, is taken equal to i). 
Using the identity 2 7 ~ 6 ( z )  = s-, +m eiBz dB, and assuming that the initial (final) 

point ~ ( 0 )  is not fixed, i.e. that the closed Brownian curve can wander everywhere in 
the plane, the resulting probability becomes 

+m 
P ( A )  = N ' L ,  d B e i B d  Tr(e-"')). (2) 

The Hamiltonian H appearing in (2) describes the motion of a charged particle 
in a constant magnetic field 

with the partition function per unit area 

B / ~ T  
sinh(tB/4)  

Tr(e- 'H) Z (  .B) = 

The Fourier transformation of Z( E )  gives 

7T 1 

t c o s h 2 ( 2 ~ d / t ) '  
P(d) = - 

(4) 

This is Levy's original result [l]. In particular, it gives a standard deviation that grows 
like t :  

(A2)' '2 = t / 4 & .  (6) 

Now we consider a Brownian motion on a rectangular domain (-a/2 < z < 
a / 2 ;  -b /2  < y & b/2)  with pure refiective boundary conditions (Neumann condi- 
tions). 

Using for the algebraic area A the expression 

A =  ( - a y d z + ( l  - a ) z d v )  (7) ! 
where a is an arbitrary parameter, the Hamiltonian H (equation (3)) now becomes 

H =  ~ [ ( p , + a B ~ ) ~ + ( ~ , - ( l - a ) B ~ ) ~ ] .  (8) 
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This expression shows that a is nothing but a gauge parameter; for the moment we 
leave it free. 

In the asymptotic regime ( 1  + +CO, [dl i +00), we are allowed to write equa- 
tion (2) as 

where E,(B)  is the ground state energy of H. Since there are large fluctuations 
of the phase factor eiBd when [AI -, 00, only small B values will give significant 
contributions to P(d). Thus all we need is the expression of E,( B) to lowest order 
in B: our problem is reduced to a simple perturbation calculation. 

With Neumann bounday conditions, the unperturbed (B = 0) ground state 
energy (wavefunction) is 

E p = o  ($p=l/G) (10) 

A E ,  E E F ) ( a )  + EF’(a) E EA 1 )  ( a )  - lEF’(a)I 

and the perturbed energy to lowest order is 

where 

E F ) ( a )  = - ( a 2 b 2  + ( 1  - a) ’a2)  
B2 

48 

( a ( ( 2 f C ’ +  1 ) 2 b 2 + ( 2 f ~ + 1 ) 2 a 2 ) - ( 2 1 < + 1 ) 2 a 2 ) 2  5 ( ( 2 K ‘ +  1)2b2 + (21C + 1)*a2)(21<+ 1)4(21<7’+ 1)4 
K,K‘=O 

AE, is quadratic in B (AE, = C B 2 ,  C > 0). Furthermore, we have checked that 
it does not depend on a. Minimizing E t ) ( a )  with respect to a leads to the gauge 

1 
(12) 

a,=--- az - 
a2 + b2 - 1 + y2 

( y  = b / a ;  we can always choose y < l ) ,  and to the expressions: 
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For small y(< 0.5). we have the following approximation: 
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F ( y )  z -X(2)X(4)y2(1 + r 2 )  + $X(5)lyl(l +y2)2  -0 .  (14) 

These expressions are especially interesting when the two lengths a and b are 
very different. In that case, AE,, is given essentially by Et ) (a , , ) ,  In contrast, the 
contribution of EP)(a,)  will be a maximum for the square (y  = 1). 

7-0 

Coming hack to P(d), we have 

(15) 
d ~ ~ i B d  e - tAEo P(d) = - 

2a  -_ 

where A E ,  = CB2.  
Thus, we get a Gaussian distribution 

-A ' /4Ct  P(d) = ~ 

2 & E e  

the standard deviation of which grows like fi 

(d2)"2 = m. 
As an example, for a square of side length a, 

( A ~ ) ' / ~  z m a  

( ( ~ 2 ) 1 / 2  E m a ,  if we neglect E P ) ( ~ , , ) ) .  
T h i n g  to the case of a one-dimensional strip of width b, we see that it suffices 

to take the limit a - m in these expressions. This leads to 

a. = 1 $)(a ) - B2b2 E f ) ( a o )  = 0 .  -18 y = 0  

Thus, P(d) is still a Gaussian of standard deviation 

(In fact, when a - CO, the unperturbed spectrum becomes continuous. Strictly 
speaking, we have to consider the low energy states of the Hamiltonian H = i [ ( p , +  
B ~ ) ~ + p i ] .  The perturbation calculation is straightforward and again gives (18) when 
1 - 03, /dl - m.) A heuristic derivation of (18) using the central limit theorem can 
be found in [SI. 

In figure 1, we compare these results with computer simulations on square lattices. 
The random walks are limited to (a )  the whole plane (Levy's law, (1 = b = M); (b) 
the strip (b = 20, a = m); (c )  the square ((1 = b = 20); and (d) the rectangle 
(6 = 20, a = 10). For each simulation point, we have generated 5ooo closed random 
walks, the number of steps t taking the values 50, 100, 200,. . . , 12 800. Theoretical 
calculations (equations (6). (17), (18)) are represented by the straight lines. At 



( A y  

100. 
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and the perturbation is given by 

.4 

a1 

bl 
C l  

d l  

50. 800. 12800. ' 
/ 

EC) = 0. 

We look at the two limiting cases: 

?(A)  Gaussian with 
(i) bZ <( 1 << R2.  All the values of A4 will contribute to Z( E ) .  This leads to the 
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This is precisely the result (18) for the strip. The particle does not have time enough 
to go round the whole domain. 

(ii) R2 1. Only M = 0 will contribute to Z ( E ) .  The standard deviation 
becomes 
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a result easily recovered if we consider that, during half of the time, the particle 
executes a quasi-one-dimensional Brownian motion along the circle of radius R 

((R6')2)''2 U fi (A2)' l2 U &= 1 nR2 = E R ,  

'RI conclude, we give the results for a rectangular domain when Dirichlet boundary 
conditions are used (i.e. we only consider Brownian curves that never meet the 
boundary). Equations (13) become 

K21i'2 [ ( 4 1 ~ ? ' ~  - l)-l - ( 4 K 2  - 1)-'12 { (4K2 - 1)2(41t"2 - 1)2 (4K'2 - l ) y 2  -I- (4K2 - 1) 
K , K ' > l  

For the strip, the standard deviation (18) is simply multiplied by a factor d w .  
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