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Algebraic areas enclosed by Brownian curves on bounded
domains
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Abstract. Using constrained path integrals and perturbation theory, we study the algebraic
area, A, enclosed by closed Brownian curves on various domains such as rectangles or
strips. In the limit of infinitely long curves, the probability distribution P(.A4) is shown
to be Gaussian. The standard deviation (A%)}'/2 is simply expressed in terms of the
length scales of the problem.

Since the pioncering work of Levy [1], the study of the algebraic area, A, enclosed
by a closed Brownian curve of length ¢ has aroused great interest. For instance, the
problem of the probability distribution P(.4) has been recently re-examined in various
contexts [2). In particular, transport properties in disordered materials in presence
of magnetic ficlds are closely related to P(A). Knowledge of this distribution allows
us to calculate corrections to weak localization (anomalous magnetoresistance [3])
as well as to localization lengths in Anderson insulators [4, 5]. In the case of weak
localization, the essential aspect of the physics is indeed governed by interference
effects between pairs of time reversed paths. In quasi-two-dimensional samples, the
correction to the Drude conductivity is piven by [3]

2e?D 2eBA
Ac(B)— Ac(0) = — < >
where B is the magnetic field and the bracket represents an averaging over all the
loops that enclose an algebraic area A, In the case of Anderson insulators, heuristic
arguments that account for the effects of the magnetic field on the localization length
have been recently proposed [5, 6]. Although the physical picture is quite different,
a central role is again played by interference cffects. The Jocalization length can be
expressed through an average similar to the onc mentioned above. When the path of
the electron is not restricted by finite sample geometry, this average can be computed
with the Levy formula. In finite samples, a plausibility argument involving the central
limit theorem {5] permits one to estimate the asymptotic distribution P(.A). In this
paper, we reconsider this problem using constrained path integrals and elementary
perturbation theory. We calculate the asymptotic (¢ — oo) distribution P(A) for
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Brownian curves that are restricted to limited regions of the plane such as rectangles,
strips or rings. Our analysis corroborates formula (8) of [5].

First, we recall Levy’s law for closed Brownian curves of length ¢ and algebraic
area A. In the path integral formulation, the probability P(Ajr(0)) for a curve, with
initial and final point fixed, to enclose the area 4 is

t 1 t .
PO =N [ prlexp (= [(war)s(a-1 [(poar)
Jr{0f=r{)=r v U8 / \ 20 /
(N is a normalization factor; the usual diffusion constant, D, is taken equal to 1).
Using the identity 278(x) = 72" /P~ 4 B, and assuming that the initial (final)
point r(0) is not fixed, ie. that the closed Brownian curve can wander everywhere in
the plane, the resulting probability becomes

P(A) = N’ fm d B e84 Tr(e~tH), (2)

— 00

The Hamiltonian H appearing in (2) describes the motion of a charged particle
in a constant magnetic field:

1 1 1/ . Br\"
H=Z(—33—;3r+§(—139* 2 )) (3)

with the partition function per unit area

Tr(e-tHy@ Z( B) = — 14T __ (4)
. r N\ s Slnh(tB/4) A
The Fourier transformation of Z( B) gives
ki 1
PA) = —————————, 5
(A t cosh?(2m.A/t) )

This is Levy’s original result [1]. In particular, it gives a standard deviation that grows
like

(AM)/? = t/4V3. ©)

Now we consider a Brownian motion on a rectangular domain (—a/2 € z

af2; —bf2 < y £ bf2) with pure reflective boundary conditions (Neumann condi-
tions).
Using for the algebraic area .4 the expression

A:f(—aydwﬁ-(l —a)zdy) (7}

where o is an arbitrary parameter, the Hamiltonian H (equation (3)) now becomes

H= ‘II[(PJ:+GBy)2+(Py—(1—-a)B:c)z], 8)
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This expression shows that « is nothing but a gauge parameter; for the moment we
leave it free.

In the asymptotic regime (t — +4o0, [A] — +00), we are allowed to write equa-
tion (2) as

+oo .
PA) ~ f d B e!BAetEo(H) (9)

where E,(B) is the ground state energy of H. Since there are ]arge fluctuations
of the phase factor ¢'®# when |A4| — oo, only small B values will give significant
contributions to P(.A4). Thus all we need is the expression of E,(B) to lowest order
in B: our problem is reduced to a simple perturbation calculation.

With Neumann boundary conditions, the unperturbed (B = 0) ground state
energy (wavefunction) is

E® =0 wi = 1/vab) (10)
and the perturbed energy to lowest order is

AE; = EM(a) + () = EM(a) - | E§P(0)|
where

2
B (@) = 2(a?B + (1 - a)%a?)

16 B?
g (1)
E (a((2K'+ 1)%0% 4+ (2K 4+ 1)%2a?) — (2K + 1)%a?)?
(2K 4+ 1)202 4+ (2K +1)2a?)(2K + DA(2K' + 1)4

|ES o) =

K,K'=0
A E, is quadratic in B (A K, = CB%,C > 0). Furthermore, we have checked that
it does not depend on «. Minimizing Ef]l)(a) with respect t0 a leads to the gauge

a? 1
aoma2+62=1+72 (12)
(v = b/a; we can always choose v < 1), and to the expressions:
B? b
E(l) ( )
b (o) = 1+ 42

16B* b?

F o (1 + 72)2

(13)
|EP ()| = F(v)

with
F(y) = =A@M)7*(1 +77) + 5901+ 77)?

{5 o o (522) (52|

+o0 1
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For small (< 0.5), we have the following approximation:
F(y) = =AM (1 + 4 + A(S)Ivl(l +9%)? — 0. (14)

These expressions are especially interesting when the two lengths ¢ and b are
very different. In that case, AE, is given essentially by Egl)(ao). In contrast, the

contribution of Ef)z)(ag) will be a maximum for the square (v = 1).
Coming back to P{.A), we have

1 [t i
'P(A)=§f dBe'BAetaE (15)

— 00

where A Ej = C'B.
Thus, we get a Gaussian distribution

1

P(A) = -A/ac 16
W=7 1)

the standard deviation of which grows like v/%:
(A% = V2. )

As an example, for a square of side length «,
(A2 ~ \/t[57a
({AN? ~ \/1]48a, if we neglect B (ay)).

Turning to the case of a one-dimensional strip of width b, we see that it suffices
to take the limit &« — oo in these expressions. This leads to

B2t
y=0 =1 Ea)==F  Effa) =0
Thus, P(.A4) is still a Gaussian of standard deviation
n1/2 _ t 18
(A= [, (18)

(In fact, when « — oo, the unperturbed spectrum becomes continuous. Strictly
speaking, we have to consider the low energy states of the Hamiltonian H = 1[(p +
By)?+ p;]. The perturbation calculation is straightforward and again gives (18) when
t — o0, JA| — o0.) A heuristic derivation of (18) using the central limit theorem can
be found in [5]. :
In figure 1, we compare these resuits with computer simulations on square ]atthCS
The random walks are limited to (a) the whole plane (Levy's law, a = b = oc); (b)
the strip (b = 20, @ = o0); (c) the square (¢ = b = 20); and (d) the rectangle
(b = 20, a = 10). For each simulation point, we have generated 5000 closed random
walks, the number of steps { taking the values 50, 100, 200, ..., 12800. Theoretical
caiculations (equations (6), (17), (18)) are represented by the straight lines. At
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Figure 1. Computer simulations on various two-dimensional square lattices. The width
{AZY1/2 of the distribution P(A) is plotted {on a log-log scale) as a function of the
length £ of the curve for the following cases: (#) Levy's law (closed circles); (b) sirip
of width b = 20 (squares); (¢) b = a = 20 (open circles}; (d) b = 20,2 = 10
(crosses). Each point corresponds to 5000 dosed random walks. The straight lines

represent theoretical results. (For further explanations, see text.)

small ¢, all the curves follow Levy’s law (they do not ‘feel’ the frontier of the domain).
Asymptotically, we observe quite good agreement between the simulations and the

theoretical calculations.

We now briefly consider a ring bounded by two concentric circles (R —5/2 £ r £
R + b/2 with R the mean radius and b the width, b < R). This kind of geometry
is interesting because of the presence of two length scales. The low energy states are

characterized by their angular momentum M

M2 1\ M? %
Ey(0) = == <F5> Py (1 + 12R2>

(0) 1 MO M
~ e €7
o = ZrRb

and the perturbation is given by

S _BM B (L b
e T G
E((JQ):O.

We look at the two limiting cases:

(19)

20)

(i) b2 < t < R®. All the values of M will contribute to Z(B). This leads to the

P(A) Gaussian with

i
Nn1/27 _
A=y g

20
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This is precisely the result (18) for the strip. The particle does not have time enough
to go round the whole domain.

(il R? < t. Only M = 0 will contribute to Z(B). The standard deviation

becomes
(AN = \/-gR 22)

a result easily recovered if we consider that, during half of the time, the particle
executes a quasi-one-dimensional Brownian motion along the circle of radius R

ni/z E n1/2 17r_.._.R2.— 1

To conclude, we give the results for a rectangular domain when Dirichlet boundary
conditions are used (i.e. we only consider Brownian curves that never meet the
boundary). Equations (13) become

6
E5ag)pie = ESY (@) newn (1 B ?‘)
2
(2) _ (128)° ¥
F2 (au)|—‘—";r"§—32 P py b
> { Kok [(41&"2—1)-1—@1(2_1)-‘]2}

@3)

XK,Kle (4K2 - 1)%(4K7 —1)? (4K - 1)y +(4K2 - 1)

For the strip, the standard deviation (18) is simply multiplied by a factor V1 — 67-%
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